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ABSTRACT

Machine learning (ML) workflows are extremely complex. The typ-
ical workflow consists of distinct stages of user interaction, such as
preprocessing, training, and tuning, that are repeatedly executed
by users but have heterogeneous computational requirements. This
complexity makes it challenging for ML users to correctly provi-
sion and manage resources and, in practice, constitutes a significant
burden that frequently causes over-provisioning and impairs user
productivity. Serverless computing is a compelling model to ad-
dress the resource management problem, in general, but there are
numerous challenges to adopt it for existing ML frameworks due
to significant restrictions on local resources.

This work proposes Cirrus—an ML framework that automates
the end-to-end management of datacenter resources for ML work-
flows by efficiently taking advantage of serverless infrastructures.
Cirrus combines the simplicity of the serverless interface and the
scalability of the serverless infrastructure (AWS Lambdas and S3)
to minimize user effort. We show a design specialized for both
serverless computation and iterative ML training is needed for ro-
bust and efficient ML training on serverless infrastructure. Our
evaluation shows that Cirrus outperforms frameworks specialized
along a single dimension: Cirrus is 100x faster than a general pur-
pose serverless system [36] and 3.75x faster than specialized ML
frameworks for traditional infrastructures [49].
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1 INTRODUCTION

The widespread adoption of ML techniques in a wide-range of do-
mains, such as image recognition, text, and speech processing, has
made machine learning one of the leading revenue-generating data-
center workloads. Unfortunately, due to the growing scale of these
workloads and the increasing complexity of ML workflows, devel-
opers are often left to manually configure numerous system-level
parameters (e.g., number of workers/parameter servers, memory
footprint, amount of compute, physical topology), in addition to the
ML-specific parameters (learning rate, algorithms, neural network
structure).

Importantly, modern ML workflows are iterative and increas-
ingly comprised of multiple heterogeneous stages, such as (a) pre-
processing, (b) training, and (c) hyperparameter searching. As a
result, due to the iterative nature and diversity of stages, the end-
to-end ML workflow is highly complex for users and demanding in
terms of resource provisioning and management, detracting users
from focusing on ML specific tasks—the domain of their expertise.

The complexity of ML workflows leads to two problems. First,
when operating with coarse-grained VM-based clusters the pro-
visioning complexity often leads to overprovisioning. Aggregate
CPU utilization levels as low as 20% are not uncommon [27, 45].
Second, the management complexity is increasingly an obstacle for
ML users because it hinders the interactive and iterative use-cases,
degrading user productivity and model effectiveness.

This work proposesCirrus, a distributedML training framework
that addresses these challenges by leveraging serverless comput-
ing. Serverless computing relies on the cloud infrastructure, not the
users, to automatically address the challenges of resource provision-
ing and management. This approach relies on a more restricted unit
of computation, the stateless lambda function, which is submitted
by developers and scheduled to execute by the cloud infrastructure.
Thus, obviating the need for users to manually configure, deploy,
and manage long-term compute units (e.g., VMs). The advantages
of the serverless paradigm have promoted its fast adoption by dat-
acenters and cloud providers [2, 5, 6, 9, 10, 15] and open source
platforms [8, 16, 18, 32].

However, the benefits of serverless computing for ML hinge on
the ability to run ML algorithms efficiently. The main challenge in
leveraging serverless computing is the significantly small local re-
source constraints (memory, cpu, storage, network) associated with
lambda functions, which is fundamental to serverless computation
because the fine-granularity of computation units enables scalabil-
ity and flexibility. In contrast, existing ML systems commonly as-
sume abundant resources, such as memory. For instance, Spark [51]
and Bosen [49, 50] generally load all training data into memory.
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Figure 1: Typical end-to-end machine learning workflow.

(1) dataset preprocessing typically involves an expensive

map/reduce operation on data. It is common to take multiple

passes over data, e.g., when normalization is required. (2) model

training (parameter server). Workers consume data shards,

compute gradients, and synchronize with a parameter server.

(3) hyperparameter optimization to tune model and training

parameters involves running multiple training instances, each

configured with a different set of tuning parameters.

Similarly, some frameworks require data to be sharded or replicated
across all workers, implicitly assuming resource longevity for the
duration of long-running compute.

Frameworks specifically designed to deal with the resource limi-
tations of serverless infrastructures have been proposed. However,
we find that they face fundamental challenges when used for ML
training tasks out of the box; in addition to having no support for
ML workflows. As an example, PyWren [36] uses remote storage
for intermediate computation results, adding significant overheads
to fine-grain iterative compute tasks which are typical of ML work-
loads. Importantly, the reliance on external storage by such frame-
works is fundamental to their design, enabling them to scale to large
data-intensive jobs (e.g., map-reduce computations). However, we
observe that ML workflow computations are heterogeneous and in-
volve frequent fine-grained communication between computational
nodes which requires a novel design to ensure efficiency.

Importantly, Cirrus is designed to efficiently support the en-
tire ML workflow. In particular, Cirrus supports fine-grain, data-
intensive serverless ML training and hyperparameter optimization
efficiently. Based on the parameter server model (see Figure 2),
Cirrus provides an easy-to-use interface to perform scalable ML
training leveraging the high scalability of serverless computation
environments and cloud storage. Cirrus unifies the benefits of
specialized serverless frameworks with the benefits of specialized
ML training frameworks and provides an easy-to-use interface (§4)
that enables typical ML training workflows and supervised learning
algorithms (e.g., Logistic Regression, Collaborative Filtering) for
end-to-end ML workflows on serverless infrastructure.

Cirrus builds on three key design properties. First, Cirrus pro-
vides an ultra-lightweight (∼80MB vs 800MB for PyWren’s runtime)
worker runtime that adapts to the full range of lambda granularity,
providing mechanisms for ML developers to find the configuration
that best matches their time or cost budget. Second, Cirrus saves
on the cost of provisioning large amounts of memory or storage—a
typical requirement for ML training frameworks. This is achieved

Worker ...
model

Parameter
Server

Training
Data

model

model’ -= η model

Worker Worker

Figure 2: Distributed stochastic gradient descent training with pa-

rameter server. The parameter server iteratively computes a new

model based on themodel gradients it receives fromworkers.Work-

ers then compute new model gradients from a subset of training

data (minibatch) and themodel distributed by the parameter server.

This iterative process continues until the model converges.

through a combination of (a) streaming training minibatches from
remote storage and (b) redesigning the distributed training algo-
rithms to work robustly in the serverless environment. Third, Cir-
rus adopts stateless worker architecture, which allows the system
to efficiently handle frequent worker departure and arrival as ex-
pected behavior rather than an exception. Cirrus provides the
best of both serverless-specialized and ML-specialized frameworks
through the combined benefit of different contributions, e.g., a data
prefetching iterator (10x speedup). This yields a 3.75x improvement
on time-to-accuracy compared to the best-performing configura-
tion ML specialized frameworks [19, 49] (§6.2) and 100x compared
to the best-performing configuration of PyWren (§6.5).

2 DEMOCRATIZING MACHINE LEARNING

2.1 End-to-end MLWorkflow Challenges

Machine learning researchers and developers execute a number of
different tasks during the process of training models. For instance,
a common workflow consists of dataset preprocessing, followed by
model training and finally by hyperparameter tuning (Figure 1). In
the dataset preprocessing phase, developers apply transformations
(e.g., feature normalization or hashing) to datasets to improve the
performance of learning algorithms. Subsequently, in the model
training phase, developers coarsely fit a model to the dataset, with
the goal of finding a model that performs reasonably well and con-
verges to an acceptable accuracy level. Finally, in the hyperparame-
ter tuning phase, the model is trained multiple times with varying
ML-parameters to find the parameters that yield best results.

ML training tasks have been traditionally deployed using systems
designed for clusters of virtual execution environments (VMs) [19,
20, 26, 49, 51]. However, such designs create two important chal-
lenges for users: (a) they can lead to over-provisioning (b) they
require explicit resource management by users.

Over-provisioning. The heterogeneity of the different tasks in an
MLworkflow leads to a significant resource imbalance during the ex-
ecution of a training workflow. For instance, the coarse-granularity
and rigidity of VM-based clusters as well as the design of the ML
frameworks specialized for these environments causes developers

14



Cirrus: a Serverless Framework for End-to-end ML Workflows SoCC ’19, November 20-23, Santa Cruz, CA

User responsibility Description

Sharding data Distribute datasets across VMs
Configuring storage systems Setup a storage system (e.g.,

NFS)
Configuring OS/drivers Choosing OS and drivers
Deploying frameworks Install ML training frameworks
Monitoring Monitor VMs for errors
Choosing VM configuration Choosing VM types
Setup network connections Make VMs inter-connect
Upgrading systems Keep libraries up-to-date
Scaling up and down Adapt to workload changes

Table 1: Typical responsibilities ML users face when using a

cluster of VMs.

to frequently over-provision resources for peak consumption, which
leads to significant waste of datacenter resources [27, 45]. The over-
provisioning problem is exacerbated by the fact that, in practice,
developers repeatedly go back and forth between different stages
of the workflow to experiment with different ML parameters.

Explicit resource management. The established approach of ex-
posing low-level VM resources, such as storage and CPUs, puts a
significant burden on ML developers who are faced with the chal-
lenge of provisioning, configuring, and managing these resources
for each of their MLworkloads. Thus, systems that leverage VMs for
machine learning workloads generally require users to repeatedly
perform a series of onerous tasks we summarize in Table 1. In prac-
tice, over-provisioning and explicit resource management burden
are tightly coupled—ML users often resort to over-provisioning due
to the difficulty and human cost of accurately managing resource
allocation for the different stages of their training workflow.

2.2 Serverless Computing

Serverless computing is a promising approach to address these
resource-provisioning challenges [31, 35]. It simultaneously sim-
plifies deployment with its intuitive interface and provides mech-
anisms to avoid over-provisioning, with its fine-grain serverless
functions that can run with as few as 128MB of memory (spatial
granularity) and time out in a few minutes (temporal granularity).
This ensures natural elasticity and agility of deployment. However,
serverless design principles are at odds with a number of design
principles of existing ML frameworks today. This presents a set of
challenges in adopting serverless infrastructures for ML training
workflows. This section discusses the major limitations of existing
serverless environments and the impact they have for machine
learning systems.

Small local memory and storage. Lambda functions, by design,
have very limited memory and local storage. For instance, AWS
lambdas can only access at most 3GB of local RAM and 512MB of
local disk. It is common to operate with lambdas provisioned for
as little as 128MB of RAM. This precludes the strategy often used
by many machine learning systems of replicating or sharding the
training data across many workers or of loading all training data
into memory. These resource limitations prevent the use of any
computation frameworks that are not designed with these resource

constraints in mind. For instance, we have not been able to run
Tensorflow [19] or Spark [51] on AWS lambdas or on VMs with
such resource-constrained configurations.

Lowbandwidth and lack of P2P communication. Lambda func-
tions have limited available bandwidth when compared with a reg-
ular VM. We find that the largest AWS Lambda can only sustain
60MB/s of bandwidth, which is drastically lower than 1GB/s of band-
width available even in medium-sized VMs. Further restrictions
are imposed on the communication topology. Serverless compute
units such as AWS Lambdas do not allow peer-to-peer communica-
tion. Thus, common communication strategies used for datacenter
ML, such as tree-structured or ring-structured AllReduce commu-
nication [43], become impossible to implement efficiently in such
environments.

Short-lived andunpredictable launch times. Lambda functions
are short-lived and their launch times are highly variable. For in-
stance, AWS lambdas can take up to several minutes to start after
being launched. This means that during training, lambdas start at
unpredictable times and can finish in the middle of training. This
requires ML runtimes for lambdas to tolerate the frequent departure
and arrival of workers. Furthermore, it makes runtimes such as MPI
(used, for instance, by Horovod [47] and Multiverso [7]) a bad fit
for this type of architecture.

Lack of fast shared storage. Because lambda functions cannot
connect between themselves, shared storage needs to be used. Be-
cause ML algorithms have stringent performance requirements,
this shared storage needs to be low-latency, high-throughput, and
optimized for the type of communications in ML workloads. How-
ever, as of today there is no fast serverless storage for the cloud
that provides all these properties.

3 CIRRUS DESIGN

Cirrus is an end-to-end framework specialized for ML training in
serverless cloud infrastructures (e.g., Amazon AWS Lambdas). It
provides high-level primitives to support a range of tasks in ML
workflows: dataset preprocessing, training, and hyperparameter
optimization. This section describes its design and architecture.

3.1 Design Principles

Adaptive, fine-grained resource allocation. To avoid resource
waste that arises from over-provisioning, Cirrus should flexibly
adapt the amount of resources reserved for each workflow phase
with fine-granularity.

Stateless server-side backend. To ensure robust and efficient man-
agement of serverless compute resources, Cirrus, by design, op-
erates a stateless, server-side backend (Figure 3). The information
about currently deployed functions and the mapping between ML
workflow tasks and compute units is managed by the client-side
backend. Thus, even when all cloud-side resources become unavail-
able, the ML training workflow does not fail and may resume its
operation when resources become available again.

End-to-end serverless API.. Model training is not the only impor-
tant task an ML researcher has to perform. Dataset preprocessing,
feature engineering, and parameter tuning are other examples of
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Figure 3: Cirrus system architecture. The system consists

of the (stateful) client-side (left) and the (stateless) server-

side (right). The client-side contains a user-facing frontend

API and supports preprocessing, training, and tuning. The

client-side backend manages cloud functions and the allo-

cation of tasks to functions. The server-side consists of the

Lambda Worker and the high-performance Data Store com-

ponents. The lambda worker exports the data iterator API

to the client backend and contains efficient implementation

for a number of iterative training algorithms. The data store

is used for storing gradients, models, and intermediate pre-

processing results.

tasks equally important for yielding good models. Cirrus should
provide a complete API that allows developers to run these tasks at
scale with minimal efforts.

High scalability. ML tasks are highly compute intensive, and thus
can take a long time to complete without efficient paralellization.
Hence, Cirrus should be able to run thousands of concurrent work-
ers and hundreds of concurrent experiments.

3.2 Cirrus Building Blocks

Cirrus makes use of three system building blocks to achieve the
aforementioned principles. First, Cirrus provides a Python fron-
tend for ML developers. This frontend has two functions: a) provide
a rich API for all stages of ML training, and b) execute and man-
age computations at scale in serverless infrastructure. Second, to
overcome the lack of offerings for low-latency serverless storage,
Cirrus provides a low-latency, distributed data store for all in-
termediate data shared by the workers. Third, Cirrus provides
a worker runtime that runs on serverless lambdas. This runtime
provides efficient interfaces to access training datasets in S3 and
intermediate data in the distributed data store.

3.2.1 Python frontend. Cirrus provides an API for all stages of
the ML workflow that is practical and easy to use by the broader
ML community for three reasons. First, the API is totally contained
within a Python package. Because many existing frameworks are
developed in Python or have Python interfaces (e.g., Tensorflow,
scikit-learn), developers can transition easily. Second, the Cirrus
API provides a high-level interface that abstracts the underlying

system-level resources. For instance, developers can run experi-
ments with thousands of concurrent workers without having to
provision any of those resources. Last, the Cirrus Python package
provides a user interface through which developers can visualize
the progress of their work.

The Cirrus Python API is divided in three submodules. Each
submodule packages all the functions and classes related to each
one of the stages of the workflow.

Preprocessing. The preprocessing submodule allows users to pre-
process training datasets stored in S3. This submodule allows dif-
ferent types of dataset transformations: min-max scaling, standard-
ization, and feature hashing.

Training. Cirrus’s training submodule supports ML models that
can be trained with stochastic gradient descent. Currently Cirrus
supports Sparse Logistic Regression, Latent Dirichlet Allocation,
Softmax and Collaborative Filtering.

Hyperparameter optimization. The hyperparameter optimiza-
tion submodule allows users to run a grid search over a given set
of parameters. Cirrus allows users to vary both ML training pa-
rameters (e.g., learning rate, regularization rate, minibatch size) as
well as system parameters (e.g., lambda size, # concurrent workers,
filtering of gradients). Cirrus can parallelize this task.

3.2.2 Client-side backend. The Python frontend provides an in-
terface to Cirrus’s client backend. This backend sits behind the
frontend and does a number of tasks: parse training data and load
it to S3, launch the Cirrus workers on lambdas, manage the dis-
tributed data store, keep track of the progress of computations and
return results to the Python frontend once computations complete.

There is a module in the backend for every stage of the workflow
(preprocessing, training, and hyperparameter optimization). These
modules have logic specific to each stage of the workflow and know
which tasks to launch. They also delegate to the low-level scheduler
the responsibility to launch, kill and regenerate tasks. The low-level
scheduler keeps track of the state of all the tasks.

3.2.3 Worker runtime. Cirrus provides a runtime that encapsu-
lates all the functions that are shared between the different compu-
tations the system supports. This simplifies the development of new
algorithms. The system runtime meets two goals: 1) lightweight, to
run within memory-constrained lambdas, and 2) high-performance,
to mitigate communication and computation overheads exacerbated
by serverless infrastructures.

The worker runtime provides two interfaces. First, it provides
a smart iterator for training datasets stored in S3. This iterator
prefetches and buffers minibatches in the lambda’s local memory
in parallel with the worker’s computations to mitigate the high-
latency (>10ms) of accessing S3. Second, it provides an API for
the distributed data store. This API implements: data compression,
sparse transfers of data, asynchronous communication and sharding
across multiple nodes.

3.2.4 Distributed data store. Cirrus’s data store serves the pur-
pose of storing intermediate data to be shared by all workers. Be-
cause inter-communication between lambdas is not allowed in
existing offerings, lambdas require a shared storage. A storage for
serverless lambdas needs to meet three goals. First, it needs to be
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API Description

int send_gradient_X(
ModelGradient* g) Sends model gradient

SparseModel get_sparse_model_X(
const std::vector<int>& indices) Get subset of model

Model get_full_model_X() Get all model weights
set_value(string key, char* data, int
size)

Set intermediate state

std::string get_value(string key) Get intermediate state

Table 2: Cirrus’s data store provides a parameter-server

style interface optimized for communication of models and

gradients. Cirrus’s interfaces to send gradients and get

model weights are specialized to each model to achieve the

highest performance. The data store also provides a general

key-value interface for other intermediate state.

low-latency (we achieve as low as 300µs) to be able to accommodate
latency-sensitive workloads such as those used for ML training
(e.g., iterative SGD). Second, it needs to scale to hundreds of work-
ers to take advantage of the almost linear scalability of serverless
infrastructures. Third, it needs to have a rich interface (Table 2) to
support different ML use cases. For instance, it’s important that
the data store supports multiget (§6.5), general key/value put/get
operations, and a parameter-server interface.

To achieve low-latency, we deploy our data store in cloud VMs. It
achieves latencies as low as 300µs versus ≈ 10ms for AWS S3. This
latency is critical to maximize system updates/sec for model updates
during training.We use sparse representations for gradients and
models, to achieve up to 100x compression ratio for data exchange
with the store, and batch requests.

To achieve high scalability Cirrus includes the following mech-
anisms: (1) sharded store, (2) highly multithreaded, (3) data com-
pression, (4) gradient filters, and (5) asynchronous communication.

3.3 End-to-End MLWorkflow Stages

This section describes in detail the computations Cirrus performs.
We structure this according to the different stages of the workflow.

3.3.1 Data Loading and Preprocessing. Cirrus assumes train-
ing data is stored in a global store such as S3. For that reason, the
very first step when using Cirrus is to upload the dataset to the
cloud. The user passes the path of the dataset to the system which
then takes care of parsing and uploading it. In this process, Cirrus
transforms the dataset from its original format (e.g., csv) into a
binary format. This compression eliminates the need for deseri-
alization during the training and hyperparameter tuning phases
which helps reduce the compute load in the lambda workers. Sec-
ond, Cirrus generates similarly-sized partitions of the dataset and
uploads them to an S3 bucket.

Cirrus can also apply transformations to improve the perfor-
mance of models. For instance, for the asynchronous SGD opti-
mization methods Cirrus implements, training is typically more
effective after features in the dataset have been normalized. Because
normalization is a recurrent data transformation for the training
models Cirrus provides, the system allows users to do different
types of per-column normalization such as min-max scaling.

AWS Lambda Challenges Cirrus System Design

Limited lifetime (e.g., 15 min) Stateless workers coordinate
through data store

Memory-constrained
(e.g., 128MB)

Runtime prefetches minibatches
from remote store

High-variance start time Runtime tolerates late workers

No P2P connections Stateful frontend coordinates work-
ers through data store

Lack of low-latency serverless stor-
age with rich API for ML

Data store with parameter-server
and key-value API

Table 3: Technical challenges of using lambda functions in

AmazonAWSandCirrus’s design choices that address them

For these transformations, Cirrus launches a large map-reduce
job – one worker per input partition. In the map phase, each worker
computes statistics for its partition (e.g., mean and standard devi-
ation). In the reduce phase, these local statistics are aggregated
to compute global statistics. In the final map-phase, the workers
transform each partition sample given the final per-column sta-
tistics. For large datasets, the map and reduce phase aggregates
per-column statistics across a large number of workers and columns.
This generates a large number of new writes and reads per second,
beyond the transactions throughput supported by S3. For this rea-
son, we use Cirrus’s low-latency distributed data store to store the
intermediate results of the maps and reduces.

3.3.2 Model training. For model training Cirrus uses a dis-
tributed SGD algorithm. During training workers run on lambda
functions and are responsible for iteratively computing gradient
steps. Every gradient computation requires two inputs: a minibatch
and the most up-to-date model. The minibatches are fetched from
S3 through the Cirrus’s runtime iterators. Because the iterator
buffers minibatches within the worker’s memory, the latency to
retrieve a minibatch is very low. The most up-to-date model is
retrieved synchronously from the data store using the data store
API (get_sparse_model_X ).

For every iteration each worker computes a new gradient. This
gradient is then sent asynchronously to the data store (send_gradient_X )
to update the model.

3.3.3 Hyperparameter optimization. Hyperparameter optimiza-
tion is a search for model parameters that yield the best accu-
racy. A typical practice is to perform a grid search over the multi-
dimensional parameter space. The search may be brute-force or
adaptive. It is common to let the grid search run to completion in
its entirety and post-process the results to find the best configura-
tion. This is a costly source of resource waste. Cirrus obviates this
over-provisioning over time by providing a hyperparameter search
dashboard.Cirrus hyperparameter dashboard provides a unified in-
terface for monitoring a model’s loss convergence over time. It lets
the user select individual loss curves and terminate the correspond-
ing training experiment. Note that this scopes the termination to
the appropriate set of serverless functions, and provides immediate
cost savings. Thus, Cirrus offers (a) the API and execution backend
for launching a hyperparameter search, (b) the dashboard for mon-
itoring model accuracy convergence, (c) the ability to terminate
individual tuning experiments and save on over-provisioning costs.
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import cirrus
import numpy as np

local_path = "local_criteo"
s3_input = "criteo_dataset"
s3_output = "criteo_norm"

cirrus.load_libsvm(local_path, s3_input)

cirrus.normalize(s3_input, s3_output,
MIN_MAX_SCALING)

(a) Pre-process

params = {
'n_workers': 5,
'n_ps': 1,
'worker_size': 1024,
'dataset': s3_output,
'epsilon': 0.0001,
'timeout': 20 * 60,
'model_size': 2**19,
}

lr_task = cirrus.LogisticRegression(params)
result = lr_task.run()

(b) Train

# learning rates
lrates = np.arange(0.1, 10, 0.1)
minibatch_size = [100, 1000]

gs = cirrus.GridSearch(
task=cirrus.LRegression,
param_base=params,
hyper_vars=["learning_rate", "minibach_size"],
hyper_params=[lrates, minibatch_size])

results = gs.run()

(c) Tune

Figure 4: Cirrus API example. Cirrus supports different phases of ML development workflow: (a) preprocessing, (b) training,

and (c) hyperparameter tuning.

3.4 Summary

Serverless compute properties, such as spatiotemporal fine-granularity
of compute, make it a compelling candidate for transparent man-
agement of cloud resources for scalable, iterative ML training work-
flows. The benefits of those properties are eclipsed by the challenges
they create (Table 3) for existing ML training frameworks that as-
sume (a) abundant compute and memory resources per worker and
(b) fault-tolerance as an exception, not a rule. Cirrus, by design,
addresses these challenges by (a) embracing fault-tolerance as a
rule with its stateless server-side backend, (b) tracking the scala-
bility afforded by cloud-provided serverless functions with a low
overhead, high-performance worker runtime and the data store.
Cirrus obviates the need to over-provision by leveraging fine-grain
serverless compute as well as an interactive dashboard to track and
manage costs at a higher, application level for the hyperparameter
optimization stage. To the best of our knowledge, Cirrus is the
first framework that is simultaneously specialized for ML training
and serverless execution environments, morphing the benefits of
both.

4 SYSTEM USAGE MODEL

Cirrus provides a lightweight Python API for ML users. Its API
lets users perform a wide-range of ML tasks, such as: (1) dataset
loading, with support for commonly used data formats, (2) dataset
preprocessing, (3) model training, and (4) hyperparameter tuning
at scale, from within a single, integrated framework.

We designed Cirrus’s API with four goals in mind. First, the
API should be simple and easy to use. Our interface should ab-
stract users away from the underlying hardware. Second, the API
should cover computations from the beginning to the end of a work-
flow. Third, the API should facilitate experimentation with different
model and optimization parameters because ML users generally
spend a significant amount of their time and effort on model and
parameter exploration. Fourth, the API should be general, to enable
extensibility to other use cases, such as ML pipelines.

We demonstrate the capabilities of the Cirrus API with a toy
example – the example in Figure 4 consists of developing an efficient
model for the prediction of the probability of a user clicking an ad
for a dataset of display ads. This example is based on the Criteo
Kaggle competition [4].

The first step in the workflow with Cirrus is to load the dataset
and upload it to S3. For instance, the user can call the load_libsvm
method to load a dataset stored in the LIBSVM [25] format. Behind

the scenes Cirrus parses the data, automatically creates partitions
for it and then uploads it to S3. The front-end partitions datasets in
blocks of roughly 10MB. We chose this size because data partitions
in Cirrus are the granularity of data workers transfer from S3.
We have found this size allows lambda workers to achieve good
network transfer bandwidth. In addition, this keeps the size of each
worker’s minibatch cache small.

Once the data is loaded into S3 it can be immediately prepro-
cessed. Cirrus provides a submodule with different preprocessing
functions. For instance, the user can normalize the dataset by call-
ing the cirrus.normalize function with the path of the dataset in S3.
Once the data is loaded, the user can train models and see how they
perform (with a real-time user interface running on a Jupyter note-
book) and subsequently tune the model through hyperparameter
search.

5 CIRRUS IMPLEMENTATION

The Cirrus implementation is composed of four components: (1)
python frontend, (2) client backend, (3) distributed data store, and
(4) worker runtime. The frontend and client backend were imple-
mented in Python for ease of use and to enable the integration of
Cirrus with existing machine learning processes. The distributed
data store and workers runtime were implemented in C++ for effi-
ciency. Table 4 lists the different components implemented as well
as their size and implementation language. The worker runtime
code includes the iterators interface and the data store client imple-
mentation. The worker’s runtime and the datastore communicate
through TCP connections. We implemented a library of shared com-
ponents, which includes linear algebra libraries, general utilities,
and ML algorithms that are shared by all system components. We
have released publicly the implementation with an Apache 2 open
source licence 1.

Python frontend. The frontend is a thin Python API that, by de-
fault, abstracts all the details from developers but also provides the
ability to override internal configuration parameters (e.g., optimiza-
tion algorithm) through parameters to the API. This flexibility is
important because machine learning requires a high degree of ex-
perimentation. The frontend also provides a user interface running
on Plotly [34] for users to monitor the progress of the workloads
and start/stop tasks.

1https://github.com/ucbrise/cirrus
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Component Lang. LOC

Data store C++ 1070
Client backend Python 977
Python frontend and shared components Python/C++ 7017
Worker runtime C++ 1065

Table 4: Cirrus components.

Client backend. The client backend abstracts the management
of lambdas from the frontend algorithms. Internally, the client
backend keeps a list of the lambdas currently active and keeps a list
of connections to the AWS Lambda API (each one used to launch a
lambda). Lambdas that are launched during training are relaunched
automatically when their lifetime terminates (every 15 minutes).
Launching hundreds of lambdas quickly from a single server can be
challenging due to the specifics of the lambda API. To address this,
the backend keeps a pool of threads that can be used for responding
to requests for new lambda tasks.

Distributed data store. Cirrus’s distributed data store provides
an interface that supports all the use cases for storing intermediate
data in the ML workflow. This interface supports a key-value store
interface (set/get) and a parameter-server interface (send gradient /
get model).

A key goal of our data store is to provide very fast access to
shared intermediate data by Cirrus’s workers. We implemented
several optimizations to achieve this performance goal. First, to
update models with high throughput we developed a multithreaded
server that distributes work across many cores. We found that uti-
lizing multiple cores allows the datastore to serve 30% more updates
per second for a Sparse Logistic Regression workload. However,
eventually the server becomes bottlenecked by the network and
adding more cores does not improve performance. Second, to re-
duce pressure on the network links of the store we implement data
compression for the gradients and models transferred to/from the
store. Our experiments show this optimization reduces the amount
of data transferred by 2x. Last, our data store further optimizes com-
munication by sending and receiving sparse gradient and model
data structures. This reduces the amount of data to transfer by up to
100x. The modular design of the data store allows users to change,
or even add, new ML optimization algorithms (e.g., Adam) easily.

Worker runtime. Cirrus’s runtime (Figure 5) provides a) general
abstractions for ML computations and b) data primitives to access
training data, parameter models and intermediate results. These can
be used to add new ML models to Cirrus. To ease the development
of new algorithms, the runtime provides a set of linear algebra
routines. Initial versions of Cirrus used external linear algebra
libraries such as Eigen [30] for gradient computations. To reduce
the amount of time spent serializing and deserializing data to be
processed by Eigen, we ended up developing our own routines.
For data access, the runtime provides a minibatch-based iterator
backed by a local memory ring-buffer that allows workers to access
training minibatches with low latency. In addition, it provides an
efficient API to communicate with the distributed data store.

Centaur Runtime

Send
gradient

Get
Model

Asynchronous
Synchronous Get

minibatches

Sparse logistic Regression Collaborative Filtering

Latent Dirichlet Allocation Softmax

Training Data Iterator

Parameter server Interface

Figure 5: Cirrus worker runtime. Minibatches are asyn-

chronously prefetched and cached locally within each

lambda’s memory (depending on the size of the lambda

used). Similarly, gradients are sent to the parameter server

asynchronously. The model is retrieved from the parameter

server synchronously every iteration.

6 EVALUATION

This section compares Cirrus with tools specialized for ML train-
ing under traditional execution environments (§6.2 and §6.3) and
with PyWren, a framework for general serverless infrastructure
computation (§6.5). We complement our evaluation with a discus-
sion on Cirrus’s scalability (§6.4), an ablation study (§6.5), and a
microbenchmark (§6.6).

6.1 Methodology

For our evaluation, we ran serverless systems, Cirrus and PyWren,
on AWS Lambda [2]. In all experiments with serverless systems the
training dataset was stored on AWS S3. Unless otherwise noted, we
used the largest-sized lambdas (3GB of memory) for better perfor-
mance. In one of the experiments (§6.5) we used a cache.r4.16xlarge
Redis AWS instance (32 cores, 203GB of RAM, 10 Gbps NIC) to
store intermediate results used by PyWren. To deploy Cirrus’s
distributed datastore, unless otherwise noted, we used a single
m5.large instance (2 CPUs, 8GB of RAM, 10Gbps NIC). The data-
store and Cirrus’s workers were all deployed on the same AWS
region (us-west-2).

To run Apache Spark we deployed three m5.xlarge (4 cores,
16.0GB of RAM, and 10 Gbps NIC) VMs from AWS. To run Bosen
we used a varying number of m5.2xlarge Amazon AWS instances.
For both systems we split the datasets evenly across the VMs before
the start of the experiments.

For the Sparse Logistic Regression and Collaborative Filtering
problems we used Cirrus’s asynchronous SGD [44] implementa-
tion. For these experiments we configured all the systems to use a
minibatch size of 20 samples.

6.2 Sparse Logistic Regression

We compared Cirrus’s Sparse Logistic Regression implementation
against two frameworks specialized for VM-based ML training:
TensorFlow [19], and Bosen [49].
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Figure 6: (a) Loss over time comparison between Bosen and Cirrus with different setups. The best loss=0.485 achieved by

Bosen is reached by Cirrus at least 5x faster (200sec vs. 1000sec). Cirrus can converge within the lifetime of one or two

lambdas (300-600sec) faster and with lower loss than state-of-the-art ML training frameworks. (b) Convergence vs Time curve

for Tensorflow Criteo_tft benchmark [17] and Cirrus. Tensorflow was executed on a 32-core node (performed better than on

1 Titan V GPU) and Cirrus ran in 10 lambdas. We implemented the same dataset preprocessing in Cirrus. (c) Curve showing

the RMSE over time for Spark (ALS) and Cirrus when running the Netflix dataset until convergence. Spark spends the first 4

minutes processing data and terminates after converging (RMSE=0.85) in 5 iterations of ALS. Cirrus converges more quickly

to a lower RMSE (0.833).

TensorFlow is a general-purpose dataflow engine used for ML
computations. Bosen is a distributed and multi-threaded parameter
server, developed at CMU and commercialized by Petuum [50],
that is optimized for large-scale distributed clusters and machine
learning algorithms with stale updates.

Logistic regression is the problem of computing the probability of
any given sample belonging to two classes of interest. In particular,
for our evaluation we compute the probability that a website ad
is clicked, and evaluate the learning convergence as a function
of time. We use the Criteo display ads dataset [3]. This dataset
contains 45M samples and has 11GB of size in total. Each sample
contains 13 numerical and 26 categorical features. Before training
we normalized the dataset and we hashed the categorical features
to a sparse vector of size 220. This hashing results in a highly-sparse
dataset – all the systems we run in this experiment have support for
sparse data. Each training sample has a 0/1 label indicating whether
an ad was clicked or not.

To evaluate Bosen we use 1, 2 and 4 m5.2xlarge Amazon AWS
instances (each with 8 CPUs and 32GB of RAM). We configure it
to use all the 8 available cores on each instance. For each experi-
ment with Bosen, we partitioned the dataset across all machines.
To evaluate Cirrus we used Amazon AWS lambdas for workers,
m5.large instances (2 CPUs, 8GB of RAM, 10Gbps networks) for the
parameter server, and AWS S3 storage for training data and periodic
model backups. We report the best result obtained from trying a
range of learning rates for both systems. For Bosen, we only vary
learning rate and number of workers. All the other configuration
parameters were left with default values.

Figure 6a shows the logistic test loss achieved over time with
varying numbers of servers (for Bosen) and AWS lambdas (for
Cirrus). The loss was obtained by evaluating the trained model on
a holdout set containing 50K samples. We find that Cirrus is able to
converge significantly faster than Bosen. For instance, Cirrus with

10 lambdas (size 2048MB) reaches a loss of 0.49 and 0.48 after 12 and
46 seconds, respectively. On the other hand, Bosen with 2 servers
(16 threads) reaches this loss only after 600 seconds and a loss of
0.48 after 4600 seconds. Through profiling, we found that Bosen’s
performance suffers from contention to a local cache shared by
all workers that aggregates gradients before sending them to the
parameter server; this design leads to slower convergence.

In Figure 6b, we compare Cirrus with TensorFlow using the
same dataset and the same pre-processing steps. Similarly, Cirrus
reaches the best loss TensorFlow achieves by t = 1500s 3.75x faster
(by t = 400 seconds).

6.3 Collaborative Filtering

We also evaluate a secondmodel supported byCirrus: collaborative
filtering. Collaborative filtering is often used to make recommenda-
tions to a user, based on her and other users’ preferences.

We evaluateCirrus on the ability to predict the ratings users give
to other movies they have not seen. We use the Netflix dataset [13]
for this experiment.

To solve this problem, Cirrus implements a collaborative filter-
ing SGD learning algorithm that builds a matrixU of sizenusers ×K
and a matrixM of size nmovies ×K . We chose K to be 10. Our metric
of success for this experiments is the rate of convergence (Figure 6c).
This dataset contains 400K users and 17K movies and a total of 100
million user-movie ratings.

We find that Cirrus converges faster and achieves a lower test
loss than Spark (Figure 6c). Through profiling, we observe that
Spark’s ALS implementation suffers from expensive RDDoverheads,
as Spark loads the whole dataset to memory. This causes Spark to
spend more than 94% of the time doing work not directly related
to training the model. In contrast, Cirrus streams data from S3
continuously to the workers which allows them to start computing
right away.
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Figure 7: Scalability of AWS storage (GB/s), AWS serverless compute (gradients/sec), and Cirrus data store (samples/sec). Each worker con-

sumes 30MB/s of training data.

6.4 Scalability

Finally, scalability is an important property for ML workflow sup-
port. We show that the choice of serverless infrastructure rests on
its impressive scalability (Figure 7) and that Cirrus scales linearly
leveraging that advantage. We accomplish this level of scalability
by designing the system to scale across 3 dimensions: storage of
training data with S3, compute with lambdas, and shared memory
with a distributed parameter server.

Scaling serverless compute for high-intensity ML workloads
can be challenging as S3 quickly becomes the bottleneck at a high
number of requests per second [36].
Storage scalability. Cirrus addresses this issue by splitting train-
ing datasets in S3 into medium-sized objects. We use 10MB objects
because we find this size achieves good network utilization, while
being small enough for even the smallest sized lambdas. By using
large objects we reduce the number of requests per second. As a
result, we are able to scale S3 throughput linearly to 1000 of Cir-
rus workers (Figure 7a), when each worker consumes 30MB/s of
training data from S3.

While doing this experiment, we found that when launching
a large number of lambdas (e.g., >3K) AWS Lambda often times
takes tens of minutes until all the lambdas have started. This sug-
gests the need for frameworks such as Cirrus that can handle the
unpredictable arrival of workers.
Compute scalability. A second challenge is to be able to run a
large number of workers that perform a compute-intensive op-
eration such as the computation of a model gradient. We did an
experiment to figure out how well the Cirrus workers can scale
when the training dataset is backed by S3 (Figure 7b) – with no syn-
chronization of models and parameters (we explore that case in the
next experiment). Cirrus can achieve linear compute scalability by
streaming input training data and computing gradients in parallel.
Parameter server scalability. At the parameter server level, the
challenge arises from the limited network bandwidth of each VM
as well as the compute required to update the model and serve
requests from workers. Cirrus solves this problem with 1) model
sharding, 2) sparse gradients/models, 3) data compression, and 4)
asynchronous communication. Cirrus achieves linear scalability
up to 600 workers (Figure 7c).

6.5 The Benefits of ML Specialization

To evaluate the advantages of a specialized system for ML, we
compare Cirrus against PyWren [36]. PyWren is a map-reduce
framework that runs on serverless lambdas. It provides map and
reduce primitives that scale to thousands of workers. These PyWren
primitives have been used to implement algorithms in fields such
as large-scale sorting, data queries, and machine learning training.
PyWren’s runtime is optimized to run on AWS Lambdas, the same
serverless platform we used for all Cirrus experiments.

To perform this comparison we initially implemented a synchro-
nous SGD training algorithm for Logistic Regression on PyWren.
Our code uses PyWren to run a number of workers on lambdas
(map tasks) and the gradients returned by these tasks are aggre-
gated and then used to update the model (in the PyWren driver).
The driver iteratively updates and communicates the latest model
to workers through S3.

We take a step further and implement a set of optimizations to
our PyWren baseline implementation. We compute the loss curve of
the system after implementing each optimization (Figure 8a). The
optimizations we implement are (cumulatively): (1) each lambda
invocation executes multiple SGD iterations + asynchronous SGD,
(2) minibatch prefetching and sparse gradients, (3) using a low-
latency store (Redis) instead of S3. Additionally, we also evaluate
the contribution of the Cirrus’s data prefetching iterator to the
performance of Cirrus.

Despite the optimizations that we implemented using Pywren,
which improved its average time per model update by 700x (from
14 seconds to 0.02) it still achieves a significantly lower number of
model updates per second (Figure 8b) and converges significantly
slower (Figure 8a) than Cirrus. We attribute this performance
gap to the careful design and high-performance implementation
of Cirrus that specializes both for the serverless environments
(e.g., data prefetching, lightweight runtime) and for the iterative
ML training workloads with stringent performance requirements
(e.g., sparse gradients, optimized data copying, multi-threaded data
store).
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Figure 8: PyWren and Cirrus’s performance on a Sparse

Logistic Regression workload when running on 10 lamb-

das. Cirrus achieves 2 orders of magnitude more model up-

dates due to a combination of prefetching, reusing lambdas

across model training iterations, and efficient model shar-

ing through Cirrus’s fast data store. In particular, training

data prefetching masks the high access latency to S3 which

results in an additional 10x more updates/second.

6.6 Microbenchmark

One of the system parametersCirrus abstracts from users is the size
of the lambda functions used for Cirrus’s workers. Larger lambdas
–measured in the size of availablememory – result inmore available
CPU power and consequently in higher performance.

To understand how the performance of Cirrus varies with the
size of the lambda functions, we performed the Sparse Logistic
Regression workload (Section §6.2) with four lambda sizes (128MB,
1GB, 2GB and 3GB). The performance of each individual Cirrus’s
worker – measured in updates per second – with varying lambda
sizes can be seen in Figure 9. Our results show that Cirrus’s work-
ers running on bigger lambdas can achieve a higher throughput.
However, when we plot the cost per update with different lambdas
sizes we see that small lambdas achieve the best cost per update.
This explains why we get the best performance/cost configuration
when Cirrus makes use of small lambdas.

(a) Updates/sec (b) Cost/update

Figure 9: Number of updates per second and cost per update

of a single worker with different lambda sizes. We make

an observation that, while cost grows linearly with lambda

size, the performance gains are sub-linear. This key enabling

insight helps Cirrus tap into significant performance per

unit cost gains, leveraging its ability to operate with ultra-

lightweight resource footprint.

7 RELATEDWORK

Serverless computing. Previous works have proposed high-level
frameworks for orchestrating large-scale distributed jobs running
on serverless functions. For instance PyWren [36] is a map-reduce
framework running onAWSLambdas that uses S3 as an input/output
data storage. ExCamera [29] is a library to leverage lambdas to com-
pute intensive video-encoding tasks in a few minutes. gg [28] is a
framework for serverless parallel threads that has been used for soft-
ware compilation, unit tests, video encoding, and object recognition.
These systems focus on supporting embarrassingly parallel jobs
that don’t require synchronization. Cirrus focuses instead on ML
workloads, which require synchronization and have more stringent
performance requirements. Other work [22, 42, 48] has focused
on understanding and improving the performance of serverless
architectures. Serverless systems, including our own, build on this
work to increase efficiency.
Serverless storage. Several proposals for serverless storage sys-
tems have emerged. For instance, Pocket [38, 39] is an elastic stor-
age system for serverless workloads. Unlike Cirrus’s data store,
Pocket’s API is not able to transfer sparse data structures (or multi-
get), and does not support ML-specific logic on the server side.
These properties are critical to provide high-performance storage
for ML serverless workloads.
ML parameter servers. Past works have mostly focused on de-
veloping general-purpose large-scale parameter-server systems
specialized for commodity cloud hardware. None of these existing
systems is a good fit for serverless environments. For instance, Ten-
sorflow’s [19] runtime has high memory overhead and Bosen [49]
loads all training data into memory. These design choices make
these systems inefficient for running in lambdas, which only have
available a few hundreds MBs of RAM. Other systems, such as
Multiverso [7] and Vowpal Wabbit [20], leverage MPI as a run-
time, making them a bad fit for an environment where tasks are
ephemeral and need to be terminated and restarted frequently. Last,
unlike Cirrus, systems such as [40, 41] shard the training data
across all workers. Thus, each worker requires a large amount
of local disk capacity or otherwise many server nodes need to be
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allocated. Cirrus, on the other hand, has minimal local disk require-
ments because it continuously streams training data from remote
storage.
Other ML Frameworks. General distributed computing frame-
works such as Spark [51], and Hadoop [23] have also been used
to implement large-scale distributed machine learning algorithms
such as those used in our work. In contrast with these systems,
Cirrus is optimized for both serverless and machine learning work-
loads. Cirrus achieves better performance by combining an ultra-
lightweight runtime and a scalable distributed data store. Recent
work on developing a prototype of Spark on AWS Lambda confirms
that porting existing frameworks to lambdas requires significant
architectural changes [14]. For instance, the current prototype of
Spark on AWS Lambda does not support ML workloads and takes
2 minutes to start a Spark Executor inside the lambda.
Disaggregated architectures Recent work on disaggregated ar-
chitectures has been proposed by both industry (e.g, HP [33], In-
tel [12], Huawei [11], and Facebook [1]) and academics (e.g., Fire-
box [24], Microsoft Research [46], VMWare [21] and others [37]).
Disaggregated architectures are a promising path for accelerat-
ing large-scale serverless computations, such as ML workflows,
through novel hardware/network platforms. For instance, Aguilera
et al [21] propose a refreshable vector abstraction for keeping a stale
data vector cached on each worker. Vectors on each worker get
updated through sparse data communication. This abstraction can
be used for caching and updating MLmodels, akin to what Cirrus’s
software data store interface provides. Similarly, a high-bandwidth
high-radix network such as the one proposed by Firebox [24] can
accelerate the communication between lambdas. Such architecture
can be beneficial for large shuffles and reduces, commonly used
during the initial preprocessing phase of the ML workflow. Last,
Firebox’s heterogeneous architecture enables hardware specializa-
tion for the different stages of ML workflows. Serverless systems
such as Cirrus can build on top of such hardware architectures.

8 DISCUSSION AND CONCLUSION

This work proposes Cirrus—a distributed ML workflow frame-
work for serverless infrastructure that aims to support and simplify
the end-to-end ML user workflow by providing an easy button
for ML workflow lifecycle. Serverless compute infrastructures pro-
vide desired spatiotemporal properties given the fine-granularity
of resource allocation. The scalability of existing serverless infras-
tructures (e.g., AWS Lambdas) as well as the ease of resource man-
agement follows from this one fundamental property. However, it
creates a challenge in adoption for ML training frameworks that
assume abundant resources (coarse-grain in space) and longer-
running compute instances (coarse-grain in time). As such, they
either cannot run or suffer in performancewhen deployed on server-
less infrastructures as is. Frameworks specialized for general server-
less support fail to provide low-overhead, high-throughput run-
times required for iterative ML workflows. Cirrus morphs the
benefits of both ML training and serverless frameworks to address
key challenges in the adoption of serverless compute for machine
learning workflows. Cirrus provides (a) transparent serverless re-
source management, (b) scalability, and (c) fault-tolerance by design.

It obviates the need for expensive over-provisioning with fine-grain
resource allocation afforded by serverless infrastructures.

Cirrus leverages a number of properties of serverless disag-
gregated infrastructure, particularly, the ease of use, low-latency
lambda instantiation, and attractive performance per unit cost. Cir-
rus leverages a number of key observations we make about ML
training workloads as well: training data consumption bandwidth
is a good fit for streaming bandwidth provided by Amazon’s S3,
training data access patterns that make it possible to iterate and
stream the remote dataset, and the ability to converge with asyn-
chronous gradient updates. The latter makes it possible to deploy
the inherently stateful ML training workload on a fleet of ephemeral
serverless compute resources and robustly handle their churn. End-
to-end ML workflow on serverless infrastructure needs a system
that specializes in both. Cirrus outperforms a state-of-the-art ML
training framework [49] in terms of time to best convergence as well
as performance per unit cost, motivating the need for specialized
ML training framework designed specifically to work on serverless
infrastructure. Cirrus also outperforms a state-of-the-art general
serverless framework [36] on ML training workloads, motivating
the need for a specialized serverless framework designed specifi-
cally for iterative ML training workloads. Thus, we demonstrate
both the need for and the feasibility of a serverless ML training
framework that specializes in both, while dramatically simplifying
the data scientists’ and ML practitioners’ model training workflow.
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